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The finite compressibility of the surface of a film, due to the pres-
ence of an impurity, may lead to the film behaving as a compressible
two-dimensional medium. It is well known from shallow-water
theory,1 that the presence of a field of mass forces can lead to finite
compressibility of a two-dimensional medium. It is also known that
in a film of a viscous incompressible liquid, due to the effect of capil-
lary forces, sound waves are possible as in a two-dimensional ideal
compressible liquid.2

The papers by Gibbs3 and Taylor,4 and also the monograph by
Mysels, Shinoda and Frenkel5 are of particular value in the theory
of the motions of liquid films when capillary forces are taken into
account.

1. A model of quasi-steady viscous flow in a film

We will assume that the surfaces of the film are symmetrical
about the x3 = 0 plane in a Cartesian system of coordinates x1, x2,
x3. The scale � of the change in the flow parameters is large com-
pared with the film thickness h: � � h and the characteristic time
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ms of a viscous incompressible liquid acted upon by capillary forces are
depends on the impurity concentration of a surface-active material, sol-

nd the liquid is non-volatile. The inertia of the liquid, viscous stresses, the
e-tension gradients, impurity transfer and also the particular properties of
account. The motions of the films are described using the model of quasi-
f equations are obtained in the approximation of an ideal compressible
mbers. The conditions for the incompressible film surface approximation

re limitations of the gas-dynamic approximation in the case of a soluble
the waves related to diffusion are investigated. A continuum model of the
with a non-equilibrium pressure is constructed. The asymptotic form of

ems of impurity transfer in the limit of weak non-equilibrium is obtained.
tion of the films in steady one-dimensional problems are derived. Integral
entum and its moment for an arbitrary contour of the film are presented,
film and in quasi-statics. The boundary conditions for the solutions of the

of films are given.
© 2008 Elsevier Ltd. All rights reserved.

� � h2/� is relatively long (� is the coefficient of kinematic viscos-

ity), so that the flow is close to steady in each section of the film.6

In the stationary problem, the time � can be defined in terms of the
characteristic velocity. The velocity profile in the cross-section of
the film is the superposition of two known velocity profiles with
coefficients that vary slowly along x1 and x2 (Ref. 6)

(1.1)

Here vi are the components of the two-dimensional velocity v of the
film surface, and ui are the components of the average velocity u of
the flow of liquid in the film relative to the surface. The equations of
the model were written in Ref. 6 taking into account the principal
approximation in an inertial term, defined by the velocity v. Later, to
describe the effect of the second velocity u on the low attenuation
of wave motions of the film, in the inertial term of the equation of
momentum the small contribution of u was taken into account: the
velocity v is replaced by the average of v′1 along x3. We will write

1 O.V. Voinov. The principles of two-velocity capillary hydrodynamics of films.
Moscow, 1990. Deposited at the VINITI, 4 December 1990, No. 6090-v90.
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the equations of quasi-steady flows in films6 in the form

(1.2)

(1.3)

(1.4)

(1.5)

(1.6)

(1.7)

The bar denotes an average over the cross-section (the bar over v′
i

will henceforth be omitted if it is clear that v′
i
does not correspond

to the profile (1.1)), summation is carried over the repeated index
j = 1, 2, gi are the components of the mass force g, � is the density,
� is the dynamic viscosity coefficient, D is the diffusion coefficient,
� is the surface tension with isotherm (1.5), � and c are the sur-
face and volume concentrations of impurity, related on the surface
by the adsorption isotherm (1.5), and pe is the additional effective
pressure in super-thin films (the disjoining pressure with a minus
sign); the temperature T and the gas pressure are constant. Eqs.
(1.6) and (1.7) describe the transfer of impurity. The contribution
of the rheological properties of the surface layer in the equation of
motion is ignored.

The effect of long-range Van-der-Waals forces on the flow of
liquid films in a gas and on the solid surface can be described by a
unified equation.2,7–11 There are different ways of deriving it. In Ref.
10 one of the models of the theory of the surface tension of liquids12

is used. Instead of this, we will consider the equilibrium of a film in
the field of an arbitrary mass force g = −�U. The chemical potential
of the film includes a term which depends on the thickness,13,14 and
correspondingly a term pe(h) occurs in the equation of equilibrium
of a thin film

(1.8)
where pe = −A′/(6�h3) and A′ is the Hamaker constant (we ignore
the delay of the interaction).

We introduce the idea of the longitudinal mass force ge = −g,
equivalent to the mass force due to molecular Van-der-Waals forces.
We then obtain that the equivalent body force �ge = −�pg, which is
constant over the cross-section of the film, represents the contri-
bution of Van-der-Waals forces to the hydrodynamics equation.

Hence we see that the continuum description of a film of a Van-
der-Waals liquid can be regarded as a consequence of the equation
of the statics of a film in a field of a mass force (1.8). This important
equation was obtained for the first time by Frenkel13 (in a somewhat
different notation).

2. The boundary conditions for solutions of the system of
equations of motion of films

Under actual conditions, free films are often bounded by a rela-
tively thick edge – a meniscus. The dynamics of a film close to the
edge were first investigated by Gibbs.3 We will consider the bound-
ary conditions on the contour of a film for the case of flows with
velocities considerably lower than the velocity of sound.2 We will
ics and Mechanics 72 (2008) 42–47 43

write the stress tensor in the cross-section of film, subtracting the
contribution of the stresses in the gas

(2.1)

where 	ij is the Kronecker delta. We will divide the arbitrary con-
tour L, which bounds a certain region of the film, as in Gibbs’ papers
and elsewhere3,5 (see also O.V. Voinov. Motions of liquid films in a
gas under capillary forces. Moscow, 2006. Deposited at the VINITI
17 August 2006, No. 1081-V2006), into a section L− where the liq-
uid flows into the contour and a section L+ where the liquid flows
out of the contour:

(2.2)

where n is the unit vector of the outward normal to L.
We will consider the possible conditions which must be

imposed on the components of the velocity or the surface force
in the cross-section of the film on the contour L. We will specify the
right-hand sides in one of the following three pairs of boundary
conditions, usual in the dynamics of a viscous liquid:

(2.3)

(2.4)

(2.5)

Here 1 is the unit vector tangential to L.
In addition to one pair of conditions from (2.3)–(2.5) we will

specify a further condition, imposed on the film thickness on the
inflow line

(2.6)

The film thickness is not specified on the line where the liquid flows
out of the film.

In the case of an insoluble impurity, which can only exist on
the surface, we additionally define a line L̃− of surface inflow with
respect to the normal velocity of the surface v · n < 0, x ∈ L̃−, and
we specify on this line the condition imposed on the surface con-
centration of impurity

(2.7)

If the impurity is soluble, then instead of condition (2.7) we spec-
ify a symmetric profile of the volume concentration of impurity on
the contour L
(2.8)

Condition (2.8), imposed on the concentration c, is specified both
on the line L− and on the line L+.

The shape of the surface with tension, when the normal stress in
the liquid is specified on it, is defined by a two-dimensional Poisson
equation in h. Conditions either on h or on the normal derivative
n ·�h are usually imposed for it, and hence we set one more condi-
tion on the outflow line L+

(2.9)

Condition (2.9) is only set when the contribution of the capillary
jump of the normal stress ��2h/2 on the surface of the film is taken
into account in the stress tensor pij, defined in (2.1).

In the case of a non-viscous two-dimensional fluid, when the
viscous stresses are not taken into account in the stress tensor (2.1),
instead of conditions (2.3)–(2.5), two conditions are specified on
the inflow line L−: the components of the velocity vn and vl or the
normal stress pn (the difference between the pressure in the gas
and the pressure inside the film) and rotv, while on the outflow
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line L+ only one condition is specified, namely, the normal velocity
vn or the normal stress pn.

The mean velocity u of the liquid relative to the surface does not
occur in the boundary conditions written above, since the velocity
u is defined in terms of the field of the quantities � and h by Eq. (1.3).
But the velocity u must be taken into account when determining
the type of line L− or L+ according to conditions (2.2), in which
v′ = v + u.

The function specified on the right-hand sides of boundary con-
ditions (2.3)–(2.9), must satisfy the limits for which the model of
the flow in the film holds. In initial boundary-value problems it is
also necessary to specify the initial conditions.

3. Integrals and integral forms of the equations of motion
of the film

We will introduce the capillary tension tensor s, corresponding
to the point on the film surface x3 = z(x),

(3.1)

Using the identity

and omitting small quantities of the order of |��|h2�−2 in the cal-
culations we reduce the momentum Eq. (1.2) to the form2

(3.2)

Here E is the primitive of the effective pressure pe(h, T) = ∂E/∂h); the
quantity E → 0 when h → ∞. Taking the equation of continuity (1.4)
into account, we can rewrite Eq. (3.2) in the form

(3.3)

For steady flows, when there are no mass forces (g = 0), using Eqs
(3.3) we can write the following identities for an arbitrary closed
contour L, which hold for arbitrary solutions of the equations of

motion

(3.4)


mki are the components of the Levi-Civita tensor. The first two iden-
tities (3.4) also hold for the solutions of non-stationary problems
in the non-inertial approximation (in the quasi-statics of films). For
plane motion of the film along the x1 axis, according to the identities
(3.4), the quantities I11 and hv′

1 are constant. In the axisymmetric
problem we obtain three integrals of the equations of motion2

Here x1 is the radius and � is the angle in polar coordinates.
For the plane case we can write

(3.5)

where the flow rate hv′ = const, and s11 is defined by expression
(3.1).

2 See O.V. Voinov. Motions of liquid films in a gas under the action of capillary
forces. Moscow, 2006. Deposited at the VINITI 17 August 2006, No.1081-v2006.
ics and Mechanics 72 (2008) 42–47

The last two terms on the left-hand side of the integral (3.5)
are important in the case of superthin films, and the contribu-
tion of the capillary forces is on the right-hand side. If we put all
the terms on the left-hand side of integral (3.5) equal to zero, we
arrive at the Mysels, Shinoda, Frenkel equation,5 obtained in the
non-inertial approximation of the one-dimensional equations of
lubrication theory. Integral (3.5) was considered previously in spe-
cial cases of the non-inertial approximation, taking viscous stresses
into account6 and taking Van-der-Waals forces into account.8

4. Integral relation and asymptotic integral in problems of
impurity transfer in a film

Consider the transfer of an impurity when the changes in the
velocity v along the film are considerably greater than the velocity
u (the necessary conditions for this are given below). We put u = 0;
then v′ = v. We will also use the condition �2 � D� and we will omit
the second derivatives with respect to x1 and x2 in the transport Eq.
(1.7).

We will introduce the mean concentration

(4.1)

Integrating both sides of the transfer Eq. (1.7) over the cross-section
of the film with the above assumptions and using Eqs. (1.4) and (1.6),
we obtain

Hence, after integration, taking Eq. (1.4) into account, it follows that

(4.2)

Here �i are the Lagrangian coordinates and f is an arbitrary function
of �i.15 The integral relation (4.2) expresses the fact that the mass
of impurity in a small element of the film is constant. In the spe-
cial case when the concentration is constant over the cross-section,
relation (4.2) gives the integral obtained earlier in Ref. 8.

Using relation (4.2), we will derive the integral of the non-
stationary impurity-transfer problem. Suppose h2 � D�. Then the
concentration c will change only slightly over the cross-section
of the film, and the sum of the first two terms of the asymp-
totic expansion of the concentration c is a quadratic polynomial

of x3. The unknown coefficient of the asymptotic can be found
using the integral relation. This mathematical method corresponds
to the integral-relation method in the theory of mass transfer in
thin films.3 Correspondingly, we will write the concentration in
the asymptotic form

(4.3)

The following relations are obtained from Eqs. (4.1), (4.3) and (1.6)

Hence also from relation (4.2) we obtain the integral

(4.4)

where c0 is the concentration close to the surface and f(�i) is an
arbitrary function of the Lagrangian coordinates. Using Eq. (1.4), we

3 This method was apparently first mentioned by G.G. Chernyi.
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eliminate the velocity from relation (4.4) and obtain the integral

(4.5)

The concentrations � and c0 are related by the adsorption equation
� = �(c0, T). If we neglect the derivative with respect to time in Eq.
(4.5) we obtain the integral obtained previously in Ref. 8.

We will also write Eq. (4.5) in a different form, using the deriva-
tive of c0 with respect to time,

(4.6)

In relation (4.6), c0 = 0 corresponds to the integral for the case of an
insoluble impurity.

Hence, the solution of the problems for transfer Eqs. (1.6) and
(1.7) gives one integral (4.5) (or (4.6)), if the condition of weak non-
equilibrium h2 � D� holds (also for relatively high values of � and
a small value of u).

Using relation (4.5) and taking Eq. (1.5) into account, we can
obtain equations describing the surface tension �.

5. The approximation of an ideal compressible medium
when describing film dynamics

We will assume that the effect of impurity on the surface ten-
sion is relatively large, i.e. the Gibbs surface elasticity is high and
rapid motions of the film are possible in which the inertial term
in the momentum Eq. (1.2) is of the order of the surface tension
gradient. In such motions, characteristic values of the change in the
first velocity v∗ ∼ cs are possible, where cs is the velocity of sound.
The characteristic value of the second velocity will then be small:
u � v∗, as can be seen from simple estimates of the terms in the
momentum Eq. (1.2) and the equation for the velocity u (1.3) when
the inequality h2 � �� is taken into account.

If h2 � D�, the impurity concentration changes very little across
the film and the following equilibrium version of integral (4.5) holds

(5.1)

Hence, taking Eq. (1.5) into account we can conclude that the
surface tension depends on the thickness h and on the Lagrangian
coordinates � = �(h, �i, T).8

For a high Reynolds number for flow in the film or a similar

condition for small perturbations

(5.2)

(� is the characteristic time) the contribution of the viscous stresses
in momentum Eq. (1.2) is small. In the limit of long waves, the con-
tribution of the capillary pressure is also small: ��2h/2. Neglecting
small quantities, we obtain the equations of motion of the film – an
ideal compressible medium with a two-dimensional pressure p̃:

(5.3)

(5.4)

The equation of state (5.3) includes the dependence on the ini-
tial state, since integral (5.1) includes an arbitrary function of the
Lagrangian coordinates.

From relations (5.3)–(5.4) we obtain the velocity of sound cs in
a compressible medium with density �h:

(5.5)
ics and Mechanics 72 (2008) 42–47 45

Using integral (5.1), we write the coefficient of Gibbs elasticity
of the surface 
′ = s∂�/∂s (s is the area of a small element of the
surface)8

(5.6)

In the case of an insoluble impurity, the coefficient of elasticity of
the surface 
′ corresponds to the value H−1 = 0. The compressibility
of the film as a two-dimensional medium is characterized by the
coefficient of elasticity

(5.7)

Here the elasticity of a two-dimensional medium – the film – has
the same meaning as the elasticity of an ideal fluid – a nonlinearly
elastic body in continuum mechanics.16

From relations (5.5)–(5.7) we have the following formula for the
frequency of sound waves with wave number k

(5.8)

which agrees, in the case of an insoluble impurity, with the similar
formula of linear theory.2

We will express the conditions for the model of a two-
dimensional compressible medium to hold in terms of the
coefficient of elasticity of the surface 
′. The condition for the contri-
bution of the Laplace pressure to be small in the equation of motion
takes the form

(5.9)

The following inequality corresponds to condition (5.2) for the lon-
gitudinal viscous stresses to be small

(5.10)

The effective pressure pe makes a small contribution to the coef-
ficient of elasticity of the film (5.7) and the velocity of sound (5.8),
and we can put 
 = 
′,

(5.11)

6. Sound waves in a film and the limitations of the
applicability of the gas-dynamic approximation

The approximation of an ideal compressible medium may hold

true when there is a low energy dissipation in the actual flow. The
dissipation is small if small perturbations attenuate slightly. In this
connection we will consider small perturbations of the uniform
state of the film, periodic along the x axis, for which the thickness
has the form

Note that waves in a thin film differ considerably from linear
waves on the surface of a liquid of infinite depth17 due to the pos-
sibility of sound waves in the film.2

Suppose the complex frequency  of the sound wave differs only
slightly from the real value 0:

(6.1)

In the case of a soluble impurity, in addition to satisfying the con-
ditions h2 � �� it is necessary that h2 � D�, where � ∼ 1/0. From
the equations of motion (1.2)–(1.7) with condition (5.9) we obtain

(6.2)
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(W−1 = 0 for an insoluble impurity). The logarithmic decrement d,
according to expression (6.2), is due to three energy scattering
mechanisms. The first term is the contribution of the longitudinal
viscous stresses, which is relatively small when the second condi-
tion of (5.2) is satisfied. The second and third terms of expression
(6.2) are determined by the non-uniformity of the profiles of the
velocity of the liquid and of the concentration of impurity in the
cross-section.1,2 In view of the large value of the Prandtl diffusion
number (�/D � 1) the third term in expression (6.2) is many times
greater than the second, if the solubility of the impurity in the
liquid is significant (the ratio h/H is not small). The condition for
the quantity (6.2) to be small compared with the frequency gives
the limitation on the applicability of the approximation of an ideal
compressible medium.

We will consider the case when the coefficient of elasticity of
the film (5.7) is mainly determined by the elasticity of its surface,

 = 
′. Corresponding to relations (5.8) and (6.2), we will write the
limitation which it is necessary to impose on the small value kh in
order to satisfy the condition for the attenuation of the sound to be
weak:

(6.3)

It can be seen that when the coefficient of elasticity 
′ of the surface
changes, the energy losses per oscillation have a minimum. At the
minimum point, the two-dimensional medium – the model of the
film – is closest to an ideal fluid, and

(6.4)

From expressions (6.4) we obtain the condition for a range of
values of the coefficient of elasticity to exist, in which the sound
waves are only slightly attenuated:

(6.5)

For the least value of the Prandtl number Pr ≈ 103, corresponding to
low-viscosity liquids, and also for values of the ratio h/H that are not
small, inequality (6.5) gives a considerable limitation of the wave-
length with low attenuation for any values of the surface elasticity:
� � 100h.

Condition (6.5) also limits the applicability of the gas-dynamic
approximation to a description of flows in a film with a soluble
impurity. It is important that, if the impurity is insoluble, there is

no similar limitation and the condition for a range of parameters to
exist where there are weakly-attenuating sound waves will be the
usual one: kh � 1. This indicates the qualitative difference in the
dynamic behaviour of films with insoluble and soluble impurity.

Note that when the impurity is soluble, when h2 � D�, the atten-
uation of small perturbations controls the parameter D�/H2. When
its values are not small, the attenuation of a sound wave is high and
the gas-dynamic approximation is unsuitable.

For the limiting case h2 � D�, we can propose a non-linear model
of the motions of a film as a non-viscous compressible medium
based on Eq. (5.4) with a pressure p̃, expressed in terms of � as
given by the first relation of (5.3). In this case we define the quantity
� using integral (4.5) taking into account the non-equilibrium and
relations (1.5). Then, instead of the equilibrium pressure (5.3) we
have the non-equilibrium pressure

(6.6)

According to relation (6.6), the equation of state of a two-
dimensional non-viscous compressible medium – the model of the
film, includes the derivative with respect to time of the density of
ics and Mechanics 72 (2008) 42–47

this medium. The presence of dh/dt in the equation of state cor-
responds to the fact that, during the flow of a two-dimensional
medium energy dissipation occurs, due to the non-equilibrium
nature of the impurity concentration profile in the cross section
of the film.

7. Inertia effects in film dynamics

We will consider, corresponding to the profile of the velocity
v′ (1.1), the difference of the mean acceleration of the liquid from
the acceleration defined by the mean velocity of the liquid in the
cross-section

(7.1)

We will estimate |(u�)u|, taking the smallness of the quantity
h2/(��) � 1 into account.

For motion of the film as a two-dimensional compressible
medium, we obtain from Eqs. (1.2) and (1.3) that the second velocity
u ∼ h2(��)−1v∗, where v∗ is the characteristic change in the velocity
v. Hence it follows that the right-hand side of Eq. (7.1) is of the order
of the square of the small parameter.

For slow motions, when the velocities can be of one order, u ∼
v∗, it is more convenient to use the pressure p inside the film in
estimates. We can then write

Hence it follows that the right-hand side of equality (7.1) makes
an asymptotically small contribution to the momentum equation
(1.2), which can be neglected in the framework of the model of
quasi-steady flow in the film considered.

8. The equations of motion of films for small Mach
numbers

We will consider the limit of low compressibility of the surface
(high elasticity 
′) and derive the equations of motion of the film
for small Mach numbers, also obtaining other limitations. We will
denote by v∗ the characteristic value (scale) of the velocities u and
v, for motions of finite amplitude v∗� = �. It is necessary to obtain
the conditions for which the condition of low compressibility holds
for the velocity field v:
(8.1)

To solve this problem we reduce the equations of motion to dimen-
sionless form for specified scales of the quantities. We will consider
arbitrary smooth solutions of the equations.

For the case of an insoluble impurity, we obtain from Eq. (1.6)
the condition for which condition (8.1) is satisfied,

(8.2)

This indicates that the change in the surface concentration should
be small.

For the case of a soluble impurity, we will use condition (8.2) in
order to linearize the adsorption equation in the small neighbour-
hood of c = c0. Then, from an analysis of the solutions of the problem
for the equations of impurity transfer with linear conditions on the
surface, we obtain two limitations, which are necessary to satisfy
condition (8.1):

(8.3)
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For motions of small amplitude, when the change h1 of the thick-
ness is small, the small factor h1/h0 will occur on the right-hand
sides of relations (8.2) and (8.3). It also occurs in the estimates of
the scale � ∗

1 derived below, with the exception of the third (�3).
We will consider finite changes in the thickness h1 ∼ h0.

From the momentum Eq. (1.2) we obtain an expression for the
scale � ∗

1 of the change in the surface concentration

(8.4)

where

(8.5)

From relations (8.2)–(8.4) we obtain the conditions for the limit
(8.1) of low compressibility of the film surface to be satisfied
(8.6)

The second condition of (8.6) differs from the first only for h �
H,

√
D�, when R � 1. The parameter �1 is the square of the Mach

number, �2, �3 and �4 take into account the characteristic fre-
quency for small perturbations, the mass force the Laplace pressure,
respectively the parameter �5 is important in the case of super-thin
films, and �6 takes into account the viscous stresses in the longi-
tudinal flow. The factor h0/h1 occurs in the parameter �3 for small
changes in the thickness.

The conditions �4, �5, �6 � 1 have analogies in the case of an
ideal compressible medium in the form of conditions (5.9)–(5.11).

The fifth condition of incompressibility of the surface �5 � 1
corresponds to the effect of stabilization of a super-thin film2 due
to the action of the elasticity 
′. The stabilization of an unstable
film consists of a multiple reduction in the rate of increase of small
perturbations, ensured due to the transition of the instability of the
film from the high-frequency branch of the solution of the disper-
sion equation to its low-frequency branch (the imaginary value of
the velocity of sound changes into a real value). For conditions (8.5)
ics and Mechanics 72 (2008) 42–47 47

and (8.6) the equations of motion (1.2)–(1.7) are simplified:

(8.7)

We have the equations of the flow of a two-dimensional fluid
with density �h and two velocities v and u, where the incompress-
ibility equation is satisfied for the first. It is important that the
system of Eq. (8.7) does not contain the dependence of the surface
tension on the impurity concentration, and the impurity transfer
and surface adsorption equations. The effect of the corresponding
parameters was retained in limitations (8.6), which must be verified
when formulating and solving problems of film dynamics.
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